Approximation on the reciprocal-cubic and reciprocal-quartic functional equations in non-Archimedean fields
نویسندگان
چکیده
منابع مشابه
Stability of cubic and quartic functional equations in non-Archimedean spaces
We prove generalized Hyres-Ulam-Rassias stability of the cubic functional equation f(kx + y) + f(kx − y) = k[f(x + y) + f(x − y)] + 2(k − k)f(x) for all k ∈ N and the quartic functional equation f(kx + y) + f(kx − y) = k[f(x + y) + f(x − y)] + 2k(k − 1)f(x)− 2(k − 1)f(y) for all k ∈ N in non-Archimedean normed spaces.
متن کاملSolution and Generalized Ulam-Hyers Stability of a Reciprocal Type Functional Equation in Non-Archimedean Fields
In this paper, we obtain the general solution of a reciprocal type functional equation of the type
متن کاملCubic-quartic functional equations in fuzzy normed spaces
In this paper, we investigate the generalizedHyers--Ulam stability of the functional equation
متن کاملcubic-quartic functional equations in fuzzy normed spaces
in this paper, we investigate the generalizedhyers--ulam stability of the functional equation
متن کاملPositive-additive functional equations in non-Archimedean $C^*$-algebras
Hensel [K. Hensel, Deutsch. Math. Verein, {6} (1897), 83-88.] discovered the $p$-adic number as a number theoretical analogue of power series in complex analysis. Fix a prime number $p$. for any nonzero rational number $x$, there exists a unique integer $n_x inmathbb{Z}$ such that $x = frac{a}{b}p^{n_x}$, where $a$ and $b$ are integers not divisible by $p$. Then $|x...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2017
ISSN: 1687-1847
DOI: 10.1186/s13662-017-1128-z